www.380v.ru
23 года
в России!
N-Power
Москва (495) 740-30-85
Москва (495) 438-11-11 /51/52
Н.Новгород (831) 462-16-41
Казань (987) 297-71-90
Ростов-на-Дону (863) 298-1193

Отдел продаж:

Skype 24 ч
Скачать PDF-версию Заказать по почте
 

Системы защитного заземления TNC, TNCS, TNS, TT, IT

 

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

 

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую шину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.

 

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

 

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.


TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

 

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.

 

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_001.png b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_002.png
b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_003.png b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_004.png
b_525_0_16777215_0___images_stories_reference_tech-articles_protection-systems_005.png

 

Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

 

 

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

 

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

 

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_101.png

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).

 

Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции:  заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_102.png

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_103.png

Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).

 

Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_104.png

Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI=30мА: R (CD) << 7кОм.

R(AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U(AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R(CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.

Если R(CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R(CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.

 

Система IT (Изолированная нейтраль)

Основные принципы схемы IT:

  • Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через высокое сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
  • Земля/корпус нагрузки заземлены.

 

Нарушение изоляции в системе IT

Подробные замечания:

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_105.png

Рис.5а. Одиночный пробой / нарушение изоляции в системах IT

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_106.png

Рис.5б. Двойной пробой / нарушение изоляции в системах IT

 

Если происходит первое нарушение изоляции на фазном проводнике, в месте нарушения развивается и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабелей (и / или дополнительным принудительным высоким сопротивление ZN Нейтраль-«Земля») (см. рис. 5а). Контактная разность потенциалов (напряжение пробоя) U(A1B1) = UL1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):

IL1 = UФ / Rлинии

UL1 = RL1 * IL1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.

RL1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».

Rлинии – сопротивление линии, включающее паразитные емкостные сопротивления кабелей RП и принудительное высокое разрядное сопротивление Нейтраль-«Земля» ZN (если установлено).

UL1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).

Uф – фазное напряжение трансформатора

IL1 – ток пробоя / утечки / leakage.

 

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна UL2 = √3*UФ-UL1 может быть велика и опасна.

При малых сопротивлениях первого и второго повреждённых участков (RL1, RL2) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

IL1 = IL2 = √3*UФ / (RL1 + RL2)

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

 

Обозначения:

  • UL1 (UL2) – напряжение пробоя первого (второго) повреждённого участка.
  • UФ – фазное напряжение трансформатора.
  • IL1 (IL2) – ток пробоя/утечки 1 участка (2 участка).
  • RL1 (RL2) – сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления ZN (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно ZN), включаемый так же как и ZN между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых ZN и ПМИ.

Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).

 

 

Обозначения:

  • SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
  • RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
  • PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • ZN optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
  • Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.

 

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

 

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

 

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!

(УЗО не сработает, если человек находится на изолирующем коврике!)

 

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.

 

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

 

 

Комментарии 

 
+8 #1 Ilya 27.07.2012 15:05
красиво спасибо
Цитировать
 

Добавить комментарий



Яндекс.Метрика
 |  | форум по электротехнике | батарейный калькулятор
Copyright © 2001 - 2024. N-Power (Россия-Италия). Все права защищены
N-Power ® - зарегистрированный торговый знак (№706633)
ООО «ЭН-ПАУЭР», ИНН: 7728208889, ОГРН: 1157746236086
117513, ГОРОД МОСКВА, УЛ. ОСТРОВИТЯНОВА, Д. 4, ПОМЕЩ. XVIIА КОМНАТЫ 1-14
Яндекс цитирования